

Drivers and Barriers for a Hydrogen Economy: from Resources to Social Acceptance

Benjamin C McLellan

Professor, Graduate School of Energy Science, Kyoto University

<u>b-mclellan@energy.kyoto-u.ac.jp</u>

17th of January, 2024

e-ASIA JRP Workshop

Hydrogen Economy – Technologies for Energy Management

- Hydrogen has been considered as an option for clean energy storage and utilization since at least 1875 (Jules Verne – The Mysterious Island)
- The "Hydrogen Economy" consists of the production and usage of H₂ and electricity across society
- The "Hydrogen Economy" term was coined in the early 1970's
- Although the idea is attractive, it has seen only minimal progress
- And there are still many challenges including social, technical and resources

Hydrogen Economy

Many visions of the "Hydrogen Economy" exist Hydrogen can be used in various sectors and made by many routes

Image credit: Jiazhen Yap, Kyoto University

Barriers to a Hydrogen Economy

- Techno-economic the cost of hydrogen technologies is still not low enough to be competitive
- Social acceptance there is a lack of understanding of hydrogen in society
- Resources (?) some critical minerals may be limited in supply for a transition to a hydrogen economy
- Just transitions how equitable would a Hydrogen Economy be, across the supply chain?

Social perspectives

Knowledge of different type of energy

A comparison of how much the general public know of hydrogen energy compare to other energy

Source: Jiazhen Yap, Kyoto University

To understand public perception of hydrogen economy

Perception towards H2 production

- Water electrolysis made up of 0.03% (30kt H₂) of global production
- Byproduct: hydrogen produced in facilities designed primarily for other products, mainly refineries in which the reformation of naphtha into gasoline results in hydrogen
- [1] IEA, "Global Hydrogen Review 2021," 2021. doi: 10.1787/39351842-en.

Perception towards H2 end-use

[1] IEA, "Global Hydrogen Review 2021," 2021. doi: 10.1787/39351842-en.

Resources

Bulk Minerals – large scale target for hydrogen?

- Iron and Steel, and Cement Production – Bulk Minerals
- Vital for infrastructure
- Difficult to decarbonize due to high temperature, high volume fuel requirement and chemical production of CO₂
- Decoupling of the emissions from energy and production using innovative technologies
- Hydrogen-based Direct Reduced Iron
- CCS for steel and cement

Hydrogen, Fuel Cells and Critical Minerals

- High uncertainty about potential cost reduction in H₂ supply chains
- 6x increase in production by 2050 (IEA NZE)
- PGMs and REE for Fuel Cells and electrolysers
- Palladium / Vanadium for purification

India, 2016

2021 Mine Production of Major PGMs (kg)

■ United States ■ Canada ■ Russia ■ South Africa ■ Zimbabwe ■ Other countries

Fukushima, 2022

Technological improvements vital

Electrolysis technologies are basically the same as Fuel Cells – in reverse

Contain many of the same materials

Need to reduce costs through scale-up and innovation, otherwise H2 is unlikely to contribute significantly Hydrogen Production by Source

Data: International Energy Agency (2021), Net Zero by 2050, IEA, Paris

Just transitions

Where will the impacts be?

Disadvantage / Advantage and power producing regions

Source: Census of Population and Housing: Socio-Economic Indexes for Areas (SEIFA), 2021 Australian Statistical Geography Standard (ASGS), 2021 Geocentric Datum of Australia, Australia Albers, 1994 © Commowealth of Australia, 2023

Japan Survey: Priority for Energy Transitions

 $0\% \ 10\% \ 20\% \ 30\% \ 40\% \ 50\% \ 60\% \ 70\%$

"Lacking time, ... usually means that choices fall into one or a limited number of types: *incrementalism, standard operating procedures, vacillation and indecision, and doing nothing at all.*

Creativity in any case is seldom sought or celebrated."

Ref: Brewer, 2007

Questions welcome

Information: <u>b-mclellan@energy.kyoto-u.ac.jp</u>

"Critical" minerals definition

Energy demand and Carbon Neutrality

- Technologies required to:
 - Increase efficiency of energy consumption
 - Enable electrification
 - Utilise low or zero carbon fuels (H₂, biofuels, etc.)

(IEA NZE Scenario) 120.0 100.0 Fotal Energy Consumption (EJ) 80.0 ■ Other gas / liquid fuels 60.0 Hydrogen Electricity 40.0 20.0 0.0 2020 2030 2010 2040 2050

Priority initiatives: Electrification of transport Storage of variable renewables

Total Energy Consumption in Transport