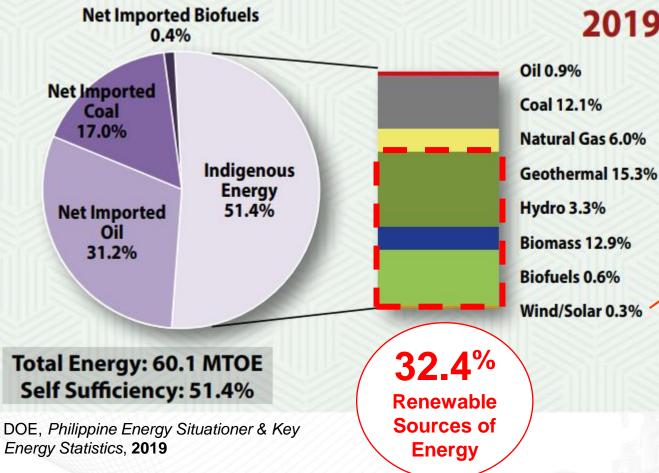


Electroactive textile supercapacitor electrodes for renewable energy storage

Felicidad Christina R. Peñafiel

Department of Chemistry, College of Science Research Center for the Natural and Applied Sciences University of Santo Tomas

Center for Advanced Materials for Clean Energy Technologies based on Indigenous Materials (CAMCET) Science for Change: Niche Centers in the Regions for R&D (NICER)



Philippine Energy Industry Background

Sources of Energy Supply

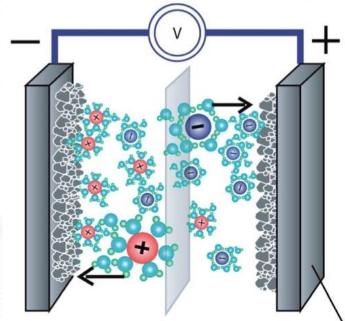
2019

PhilSolar, n.d.

Problems

- Not available during high energy demand •
- Highly variable and provides uneven power •
- Batteries charge slowly and have short lifespan

Supercapacitors


Solution:

Improve Energy Storage Devices

- ✓ Batteries
- Supercapacitors

Supercapacitor

- Stores energy by charge separation on the surface of its electrodes
- Quick charge and discharge cycles (seconds)
- Can easily adjust to current variations

Jost, et al., J. Mater. Chem. A, 2014.

Supercapacitor Parts

- Current Collector
- Electrolyte
- Separator
- Electrode Material

Ideal Electrode Material

- Conducting
- High surface area & porosity
- High capacitance (Wang et al., *Chem.Soc.Rev.*, 2012)

Solution: Composite Materials

Natural Fiber-Polyester Blended Textiles

- Flexible and porous (Hu et al., Nano Letters, 2010)
- ✓ High surface area, 3D materials (Firoz Babu et al., *Carbohydr. Polym.*, **2013**)
- x Insulators

Natural Fibers

- Cellulosic in nature
- hydrophillic

Polyester Fibers

- Poly(ethylene terephthalate)
- hydrophobic

Carbon Materials

- MWCNTs or biochar
- Modest to excellent conductivity
- ✓ High surface area
- Durable
- Good chemical stability
- Long cycle life
- Moderate capacitance values

 (~10 to 100x lower than CPs and metal oxides)
 (Wang et al., Chem.Soc.Rev., 2012)

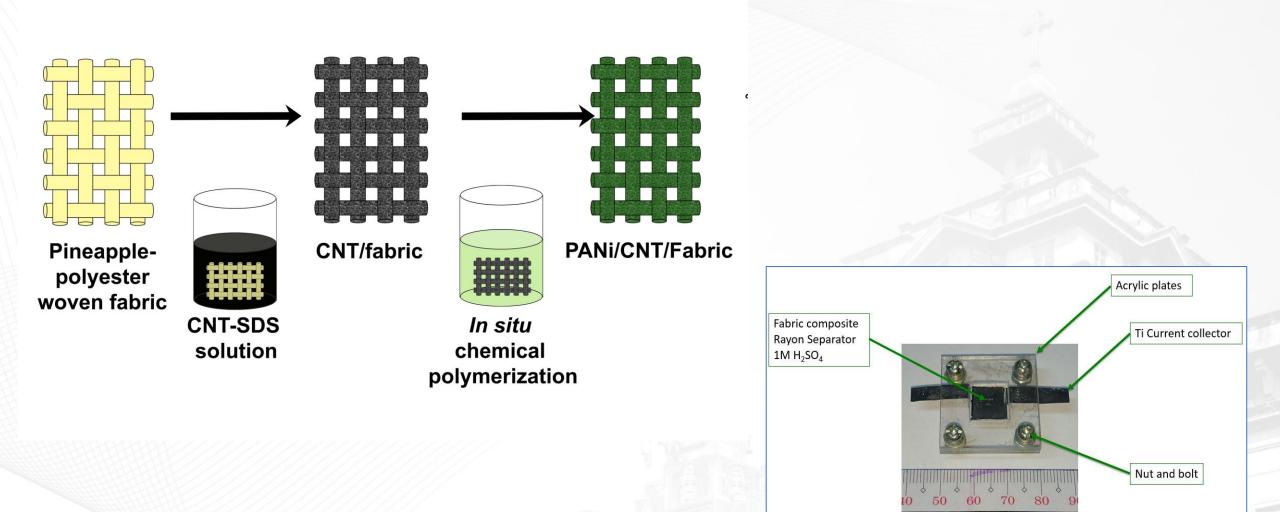
Conducting Polymers

- Polyaniline or Polypyrrole
- Interesting redox properties
- ✓ Low cost
- ✓ High theoretical capacitance
- Good conductivity
- Easy to synthesize
- Poor cyclic stability
- x Poor mechanical properties
- x Brittle

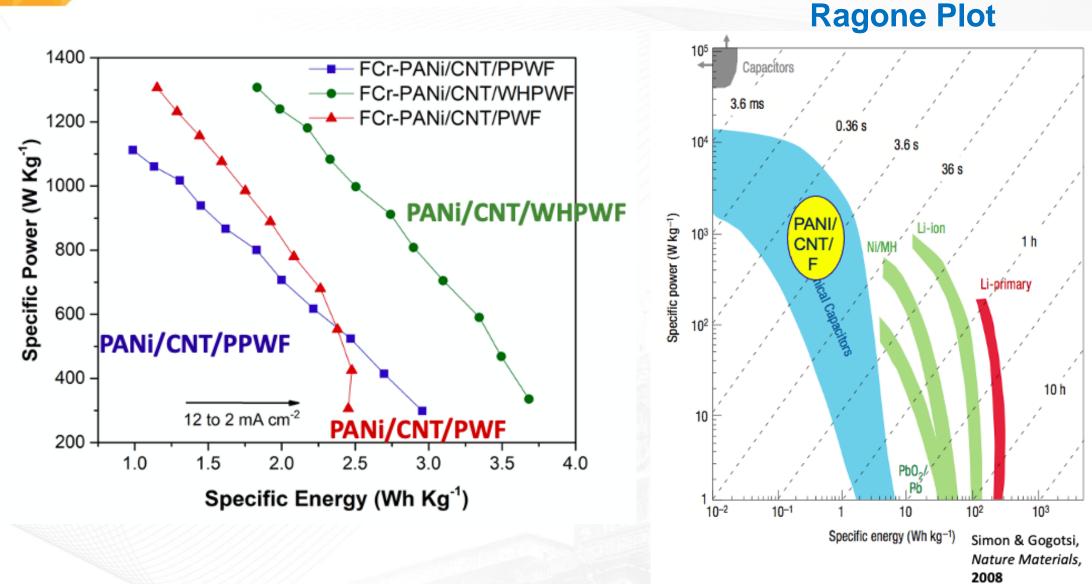
(Luo et al., 2020; Ryu et al., 2021; Yilmaz Erdogan et al., 2020; Liu et al., 2018; D. Sun et al., 2020; Yang et al., 2018)

Pineapple- and Water Hyacinth-Polyester Composite Fabrics as Supercapacitor Electrode Materials

Felicidad Christina Ramirez,^{1,2,3} Sangaraju Shanmugam,⁴ and Christina A. Binag^{1,2,3}

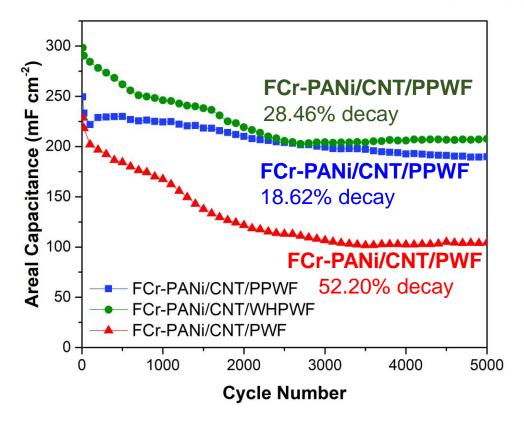

 ¹Department of Chemistry, College of Science,
 ²Graduate School
 ³Advanced and Nano Materials Laboratory, Research Center for the Natural and Applied Sciences University of Santo Tomas, Manila 1015, Philippines
 ⁴Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711873 South Korea

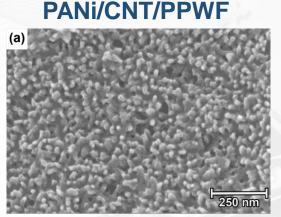
Preparation of Composite Fabrics



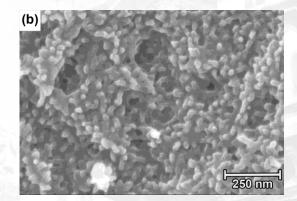
Ramirez, F. C., Ramakrishnan, P., Flores-Payag, Z. P., Shanmugam, S., & Binag, C. A. (2017). Polyaniline and carbon nanotube coated pineapple-polyester blended fabric composites as electrodes for supercapacitors. *Synthetic Metals*, *230*, 65–72. https://doi.org/10.1016/j.synthmet.2017.05.005

GCD Characterization of Device





Cycling Stability after 5000 cycles



• FCr-PANi/CNT/PPWF exhibited the lowest areal capacitance decay after 5000 GCD cycles at 4 mA cm⁻².

Before 5000 cycles

After 5000 cycles

Highly Porous Carbon from Abaca Fibers for Supercapacitor Electrode Applications

RCNAS

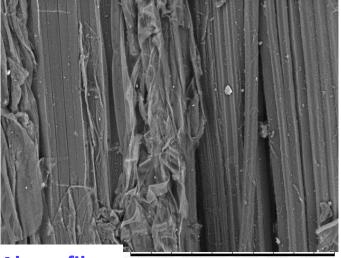
Felicidad Christina Ramirez-Peñafiel^{1,2}, Christina A. Binag^{1,2,3}, and Sangaraju Shanmugam⁴

¹Department of Chemistry, College of Science, University of Santo Tomas, España, Manila 1015, Philippines

²Advanced and Nano Materials Laboratory, Research Center for the Natural and Applied Sciences, University of Santo Tomas, España, Manila 1015, Philippines

³The Graduate School, University of Santo Tomas, España, Manila 1015, Philippines

⁴Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 50-1, Sang-Ri, Hyeonpung-Myeon, Dalseong-Gun, Daegu 42988, Republic of Korea

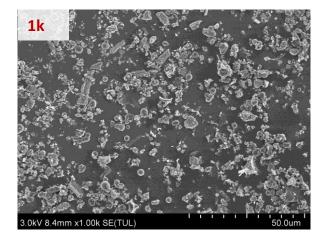

UNIVERSITY OF SANTO TOMAS

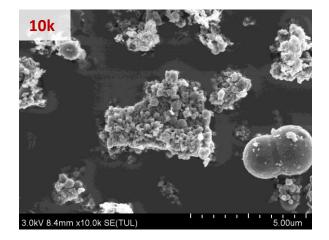
Abaca Fiber

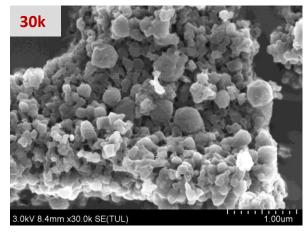
- Leaf fiber of *Musa textilis* •
- Excellent mechanical properties, saltwater resistance, and high • porosity
- Used in the production of ropes, specialty papers, textiles, • furniture, composites, handicrafts, and industrial applications
- The Philippines supplies 87% of the world's demand and ٠ produced 52,962 tons in 2020 (PhilFida, Fiber Statistics, 2020)
- SEM images show the **rough** surface of the fibers and composed ٠ of **tubes** clustered together

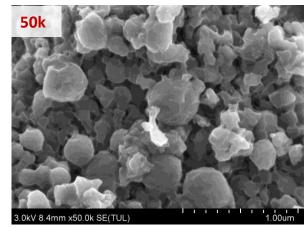
SEM Images

Abaca fiber 2015/07/31 10:02 NL D4.2 x500 200 um

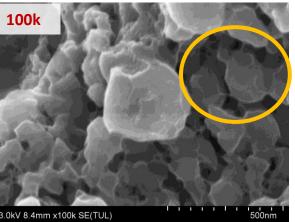

50 um

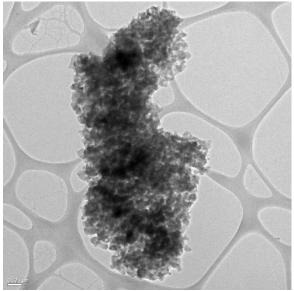

Cross-section of Abaca fiber

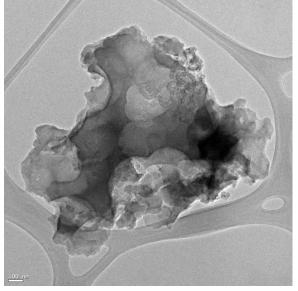




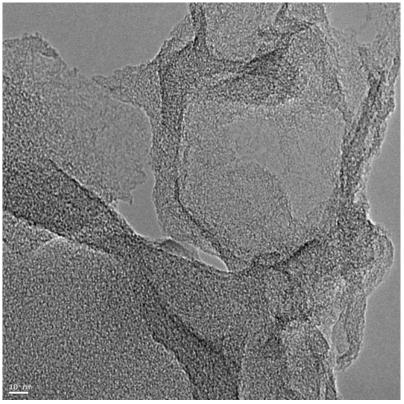
Surface Morphology




• Globular structure with multiple pores



TEM Micrographs



0.2 um

- Highly porous internal structure following a honeycomb-like arrangement
- Composed of thin sheet-like structures

10 nm

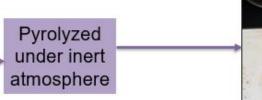
Comparison with Other Studies

Carbon Material	SSA (m²/g)	Specific Capacitance (F/g)	Electrolyte & Cell Configuration	Reference
Abaca Carbon	1915	184 at 1 A/g	1M H ₂ SO ₄ , 6M KOH, 3E- GCD	This study
Hemp Carbon Nanosheets	2287	106 at 10 A/g	Ionic liquid, 2E-GCD	Wang et al., ACS Nano, 2013
Poplar Carbon Nanosheets	1612	508 at 1 A/g	6M KOH, 3E-GCD	Liu et al., Carbon, 2019
<i>Syzygium oleana</i> leaves Carbon Nanosheets	1138	188 at 1 mV/s	1M H ₂ SO ₄ , 2E-CV	Taer et al., Journal of Materials Research and Technology, 2020
Peanut Shells Porous Carbons	3246	280 at 1 A/g	6M KOH, 3E-GCD	Zhan et al., Journal of Alloys and Compounds, 2021
<i>Metaplexis japonica</i> microporous active carbon	2210	287 at 1 A/g	6M KOH, , 3E-GCD	Li et al., Diamond & Related Materials, 2021

Polypyrrole / Rice Straw Biochar / Natural Fiber – Cotton Fabrics for Supercapacitor Applications

David Joseph G. Alzate^{1,2}, Angelico Tolentino², Hidenori Tomimatsu², <u>Felicidad Christina R. Peñafiel^{2,3}</u>, and Christina A. Binag^{1,2,3}

¹The Graduate School; ²Research Center for the Natural and Applied Sciences; ³Department of Chemistry, College of Science; University of Santo Tomas, España, Manila, Philippines


Preparation

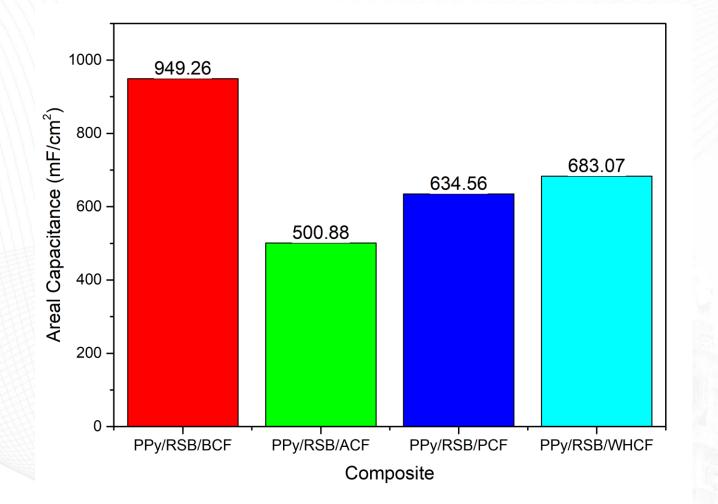
Rice straw

- · Sourced from Nueva Ecija
- Sun-dried
- · Crushed and sieved finely

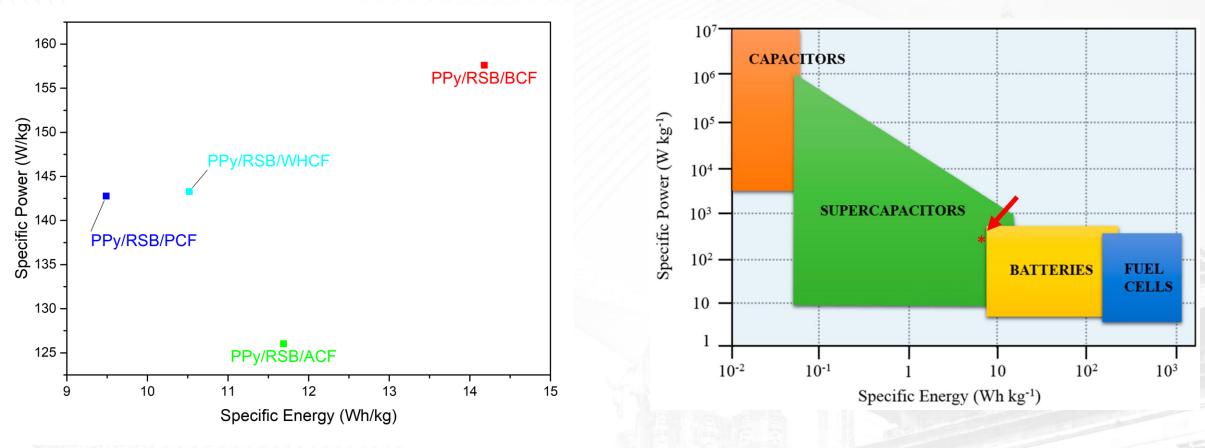
Post treatment

HNO₃

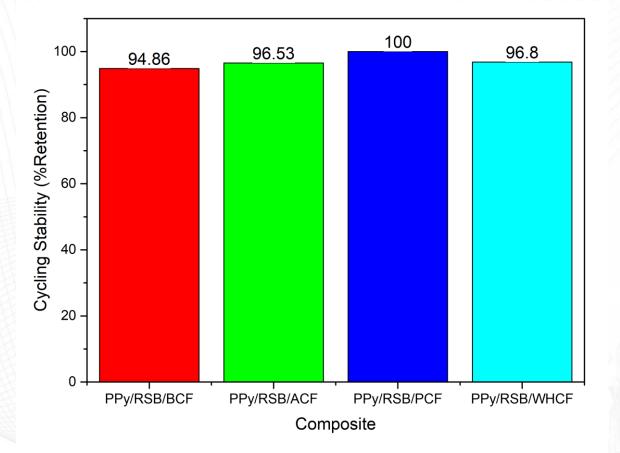
Rice Straw Biochar (RBC)


Two-electrode analysis

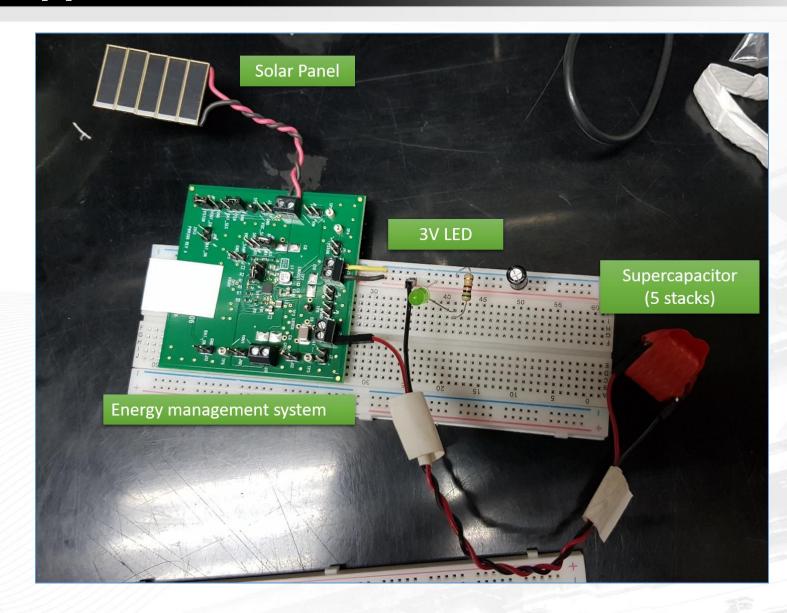
Areal Capacitance (2E GCD)



 2E studies produced higher areal capacitance values
 compared to previous
 studies due to coin cell
 configuration


Ragone Plot

Cycling Stability after 10,000 cycles



 Composites exhibited excellent cycling stability after 10,000 cycles

Application

19

UNIVERSITY OF SANTO TOMAS

Research Programs

Natural Products for Health & Wellness / Drug Discovery & Development

- Natural products chemistry and synthesis
- Natural products formulations
- Natural products pharmacology and toxicity
- Drug delivery systems

Molecular Diagnostics and Therapeutics

- Molecular Biology & Biochemistry
- Immunology
- Clinical diagnostic methods

Chemical Sensors and Biosensors

- Innovative analytical and sensing devices (i.e. optical, piezoelectric, chemoresistive and electrochemical) for:
 - ✓ food safety
 - ✓ environment
 - health

Advanced Materials

- Synthesis and characterization of new materials and nanomaterials for:
 - electrochemical energy conversion (e.g. fuel cells) and storage (e.g. supercapacitors and batteries)
 - ✓ thermal energy storage

Pure and Applied Microbiology

- Characterization and utilization of microorganisms for:
 - health
 - environmental applications

Process Design, Intelligent and Embedded

Systems, Automation

- Process design
- Wearable technologies
- Intelligent systems
- Multimedia signal processing and communications

- Faculty Development Program of the Commission on Higher Education (CHED-FDP)
- DOST Science for Change Program Niche Centers in the Regions for R&D (DOST – NICER)
- University of Santo Tomas Research Center for the Natural and Applied Sciences (RCNAS)
- Science Education Institute of the Department of Science and Technology (DOST – SEI)
- Philippine Textile Research Institute of the Department of Science and Technology (DOST – PTRI)
- Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology

