

Sustainability of Renewable Energy Implementations in Off-grid Communities

Center for Research in Energy Systems and Technologies School of Engineering, University of San Carlos

Overview of CREST

Established in 2015

- Multi-disciplinary research hub engaged in scientific and innovative studies on energy issues in the Philippines
- □ Actively engaged in R&D works related to energy, environment, and green systems; collaborations between academe, industries, government agencies, and other stakeholders
- Thrusts: energy education, energy conservation, energy management, and renewable energy

VISION | A relevant research hub for developing innovative energy solutions for the good of humanity

Previous and Ongoing Works

Capacity Building in Research

Newton-Fund Institutional Links on solar-powered greenhouse-type dryers with WSNs (Coventry Univ)

Sustainable Energy Ecosystems International Conference

2019-2021

Testbeds for low cost ventilation systems for risk reduction of infectious aerosol/virus transmission

2021-present

Newton-Fund Research Links on Sustainable Energy **Ecosystems (with University** of Southampton)

2015-2017

2017-2019

(with University of

Southampton)

Project Enkindle with SEED4COM

EU-ASEP Visayas Clean **Energy Living Laboratory**

(with Ateneo de Manila School of Governance)

AboitizPower

Boiler tube leaks research

Curriculum development - green building technologies

Research Milestones

Over 20 publications in refereed academic journals

Renewable Energy Volume 140, September 2019, Pages 905-911

Techno-economic analysis of a cost-effective power generation system for off-grid island communities: A case study of Gilutongan Island, Cordova, Cebu, Philippines

Lorafe Lozano ^a 은 쩜, Edward M. Querikiol ^b 쩝, Michael Lochinvar S. Abundo ^c쩝, Luzvisminda M. Bellotindos ^d 점

Energy Policy Volume 145, October 2020, 111715

Demystifying the authentic attributes of electricity-poor populations: The electrification landscape of rural off-grid island communities in the Philippines Energy for Sustainable Development Volume 70, October 2022, Pages 32-44

Untangling the impact of socio-demographic factors on energy consumption: Why is energy access difficult to achieve in off-grid island communities?

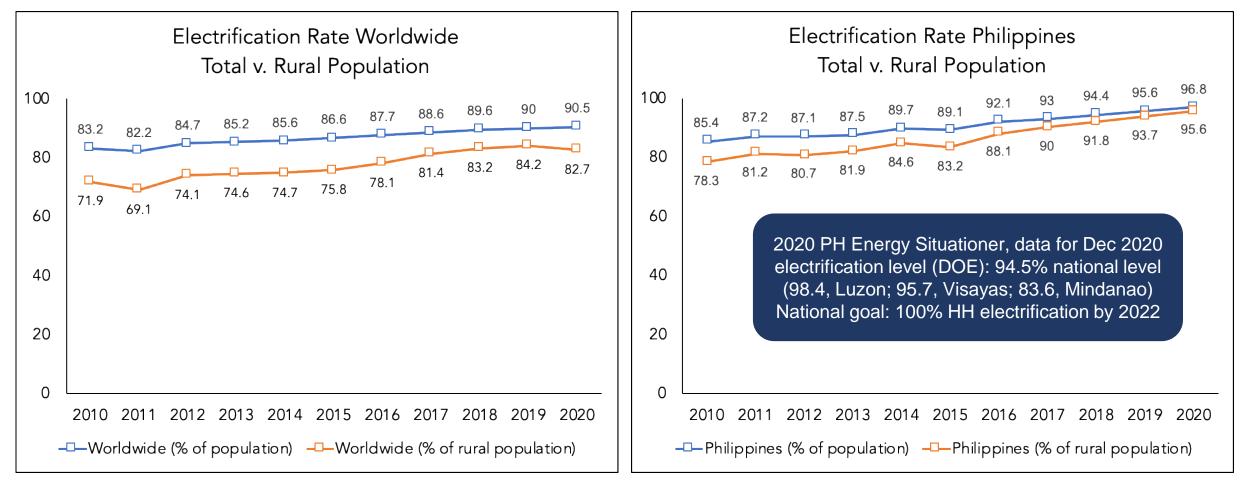
Khrisydel Rhea M. Supapo ^{a, c} 은 쯔, Lorafe Lozano ^{b, d} 쯔, Ian Dominic F. Tabañag ^{a, e} 쯔, Edward M. Querikiol ^{a, b}, f _쯔

Open Access Article

A Backcasting Analysis toward a 100% Renewable Energy Transition by 2040 for Off-Grid Islands

by 🕲 Khrisydel Rhea M. Supapo ^{1,2} 🛛 💿 () Lorafe Lozano ^{3,4} 🖓 () Ian Dominic F. Tabañag ^{1,5} 🖓 () and S Edward M. Querikiol ^{1,3,6,*} 🖓 ()

Open Access Article


🙁 Edward M. Querikiol ^{1,3,6} 🖂 💿

A Geospatial Approach to Energy Planning in Aid of Just Energy Transition in Small Island Communities in the Philippines

by 🕼 Khrisydel Rhea M. Supapo ^{1,2,*} 🗵 🗓, 🙁 Lorafe Lozano ^{1,3,4} 🗵 💿, 🙁 Ian Dominic F. Tabañag ^{1,5} 🗵 💿 and

Current Electrification Rate

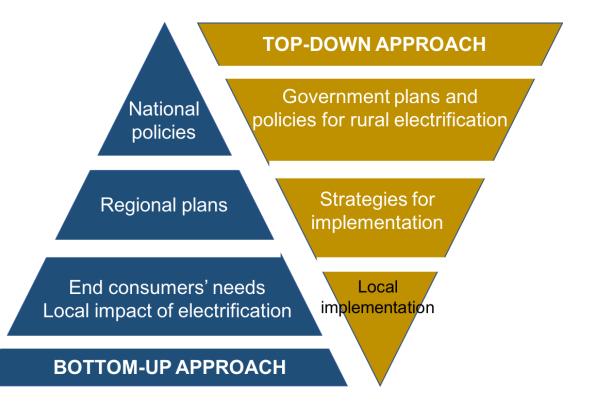
Philippine Electricity Situation

- Significantly changed the rural electrification landscape of the Philippines (gov't-initiated v. private sector participation)
- Three general strategies to increase sustainable electricity access (from MEDP):
 - (1) Improve private sector participation in missionary areas
 - (2) Improve operations and services in missionary areas
 - (3) Rationalise the electricity subsidy (UCME)
- Need to consider all the stakeholders at play; no specific grassroots contribution to strategise implementation of energy access in rural communities

Philippine Electricity Situation

 2.7 million Filipino households unelectrified (2016)

 Archipelagic nature of the country = "energy isolation barrier" for small off-grid islands


 Small islands – mostly poor populations with low energy demand; anticipated to have no sustainable market

Areas in blue are on-grid

Sustainable Rural Electrification

- Need to incorporate human behaviour and social factor in planning for electrification projects
- Need to look at particular needs of rural consumers rather than plan only from technical and economic perspectives of the project
- Sustainable energy solutions must address energy poverty and foster for socio-economic growth at grassroots level

Sustainable Rural Electrification

- Barriers to sustainable rural electrification requires us to look further into factors that directly affect rural communities
- A more holistic view of sustainable electrification especially in rural areas where populations have low income and low electricity demand

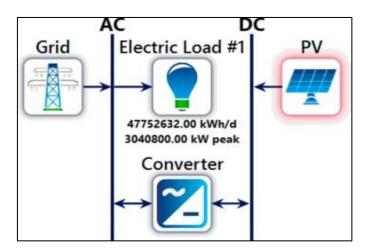
Energy Access vis-à-vis Energy Poverty

- Merely being connected to an electricity source is not indicative of the level of electricity access enjoyed by consumers
- Issues on:
 - Affordability
 - Reliability
 - Sustainability
- Question on improvement in socio-economic conditions

Energy Access vis-à-vis Energy Poverty

Energy Policy Volume 145, October 2020, 111715

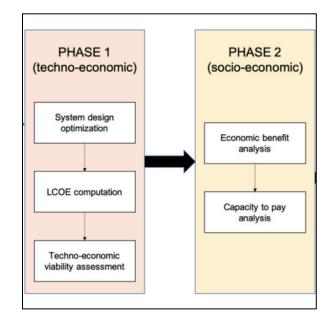
Demystifying the authentic attributes of electricity-poor populations: The electrification landscape of rural off-grid island communities in the Philippines


Lorafe Lozano $^{\rm a,\ b}\,{\stackrel{\oslash}{\sim}}\,\,\boxtimes$, Evelyn B. Taboada $^{\rm a,\ c}\,\boxtimes$

- ^a Center for Research in Energy Systems and Technologies (CREST) and Engineering Graduate Program, School of Engineering, University of San Carlos, Cebu City, 6000, Philippines
- ^b Department of Industrial Engineering, University of San Carlos, Cebu City, 6000, Philippines
- ^c Department of Chemical Engineering, University of San Carlos, Cebu City, 6000, Philippines

- Level of electricity access based on World Bank's ESMAP Framework
- Access is assessed based on five tier levels considering six attributes
- Increased access with productive uses of electricity increases tier level of off-grid island communities

Viability of increasing electricity access in offgrid island communities



Techno-economic viability analysis

- Optimisation of system design
- Optimum financial results

Socio-economic viability analysis

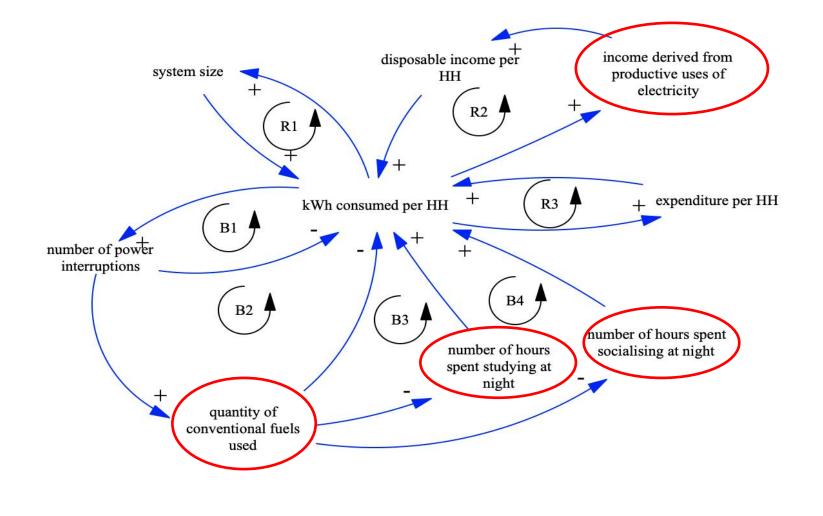
- What is the economic benefit of increased electricity access?
- Do the consumers have the capacity to pay?

Viability of increasing electricity access in offgrid island communities

- High capital investment for RETs has better pay-off when there is higher demand for electricity
- Consumers receive higher economic benefit as they consume more electricity
- Low income of rural consumers strains their capacity to pay
- Engagement in more economicallyproductive uses of electricity is necessary

MDPI

Article


The Viability of Providing 24-Hour Electricity Access to Off-Grid Island Communities in the Philippines

Lorafe Lozano ^{1,2,*}, Edward M. Querikiol ^{1,3} and Evelyn B. Taboada ^{1,4}

- ¹ Center for Research in Energy Systems and Technologies (CREST) and Engineering Graduate Program, School of Engineering, University of San Carlos, Cebu City 6000, Philippines; emquerikiol@usc.edu.ph (E.M.Q.); ebtaboada@usc.edu.ph (E.B.T.)
- ² Department of Industrial Engineering, University of San Carlos, Cebu City 6000, Philippines
- ³ Department of Electrical and Electronics Engineering, University of San Carlos, Cebu City 6000, Philippines
- Department of Chemical Engineering, University of San Carlos, Cebu City 6000, Philippines
- Correspondence: lflozano@usc.edu.ph; Tel.: +63-32-230-0100 (ext. 256)

Socio-economic development in off-grid rural communities

Conclusions and Policy Implications

Improve private sector participation

- Financial viability of projects necessary for private investments <u>BUT</u> socio-economic impacts must also be considered
- Longer electricity access paves way for more sophisticated uses but should also promote socioeconomic development and advance the livelihood of communities to support affordability of tariff

Conclusions and Policy Implications

Improve operations and services in missionary areas

- Multi-faceted nature of rural electrification requires strategic approaches in terms of technology options, financing, and institutional scaffolding
- "No single electrification plan fits all"
- Understand where communities are weak in terms of electricity access in order to effectively and efficiently strategise new projects or improve current ones

Conclusions and Policy Implications

Rationalise electricity subsidy (UCME)

 More holistic and integrated strategy to justify UCME distribution – affordability, duration, quality and reliability of electricity access (both for on-grid and offgrid areas) should not be compromised

Future Works

SwarmGrids (interconnected microgrid clusters for off-grid island communities)

- DOST-PCIEERD funding
- Power sharing device and algorithm

Business models for renewable electrification of basic services of rural island communities in the Philippines

- Collaborative research with the University of Applied Sciences and Arts Northwestern Switzerland
- Funded by ETH Zurich

Implementation of interconnected microgrids

• Proposal submitted with the Einstein Project of Yonsei University

Sustainability of Renewable Energy Implementations in Off-grid Communities

Center for Research in Energy Systems and Technologies School of Engineering, University of San Carlos