Application of learnings from bla_{CTX-M} to characterization of plasmids harboring antimicrobial-resistance genes.

Itaru Hirai University of the Ryukyus

Introduction

- Worldwide-distributing antimicrobial-resistant bacteria are serious public health concerns.
- ✓ Extended-spectrum β -lactamase (ESBL)-producing Enterobacteriaceae is one of the CDC's serious threats.
- We have observed more than 50% of asymptomatic healthy individuals in the Southeast Asian countries carried ESBL-producing bacteria.

Introduction

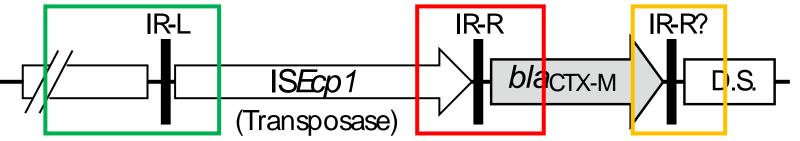
- Acquiring antimicrobial-resistance (AMR) gene(s) and/or gene mutations are main cause of emerging of these bacteria. Such as, *Escherichia coli* that acquired *bla*_{CTX-M} was transformed to ESBLproducing *E. coli*.
- CTX-M type ESBL gene, *bla*_{CTX-M} is transported among bacterial cells via plasmid harboring multiple AMR genes.
- In adiition, *bla*_{CTX-M} is one of the IS-transported AMR genes; therefore, *bla*_{CTX-M} is found both on plasmid(s) and chromosome.

Application of learnings from *bla*_{CTX-M} to characterization of plasmids harboring antimicrobial-resistance genes.

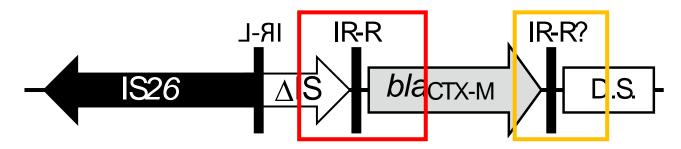
1st Aim

✓ To observe what types of ESBL-producing bacteria asymptomatic healthy people carried in Vietnam and Indonesia.

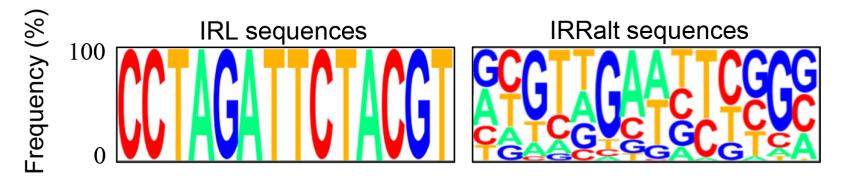
Ideas or strategies


- \checkmark To establish analytical method to discriminate location of *bla*_{CTX-M}.
- ✓ To establish genotyping method based on the bla_{CTX-M} location.

Application of learnings from *bla*_{CTX-M} to characterization of plasmids harboring antimicrobial-resistance genes.


Molecular structure of bla_{CTX-M} transposition unit.

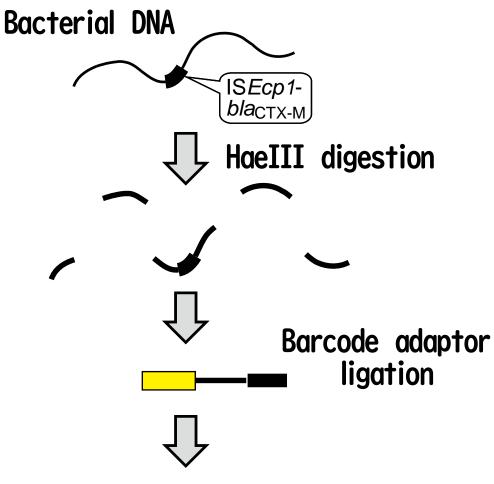
Next generation sequencer is not suitable for determining *bla*_{CTX-M} transposition unit.



Disrupted structure (often found on plasmid)

1st Learning

Observations of bacterial isolates and model *E. coli* strain indicated that IR-L (upstream) of *bla*_{CTX-M} transposition unit is well conserved.



This results implied us a possibility of genotyping method based on the upstream genetic structure of bla_{CTX-M} .

Hamamoto K, et al., Int J Med Microbiol. 2020, 310(2):151395.

Application of learnings from *bla*_{CTX-M} to characterization of plasmids harboring antimicrobial-resistance genes.

Based on the 1st learning, we established a genotyping method.

Adaptor ligation-mediated PCR and Nanopore sequencing

- As shown in the left figure, genomic DNA is digested by restriction enzyme, HaeIII and subjected to adaptor ligation mediated PCR.
- ✓ Amplified DNA was subjected to the Nanopore sequencer.
- ✓ Upstream genetic structure (UGS) of bla_{CTX-M} was used for genotyping and classification.

Yagi N, *et al.*, J Infect Chemother., 2021, 27(9), 1288-1294. Widyatama FS, *et al.*, Microbiol Immunol., 2021, 65(12), 542-550.

Then we analyzed 501 isolates from Vietnam and Indonesia.

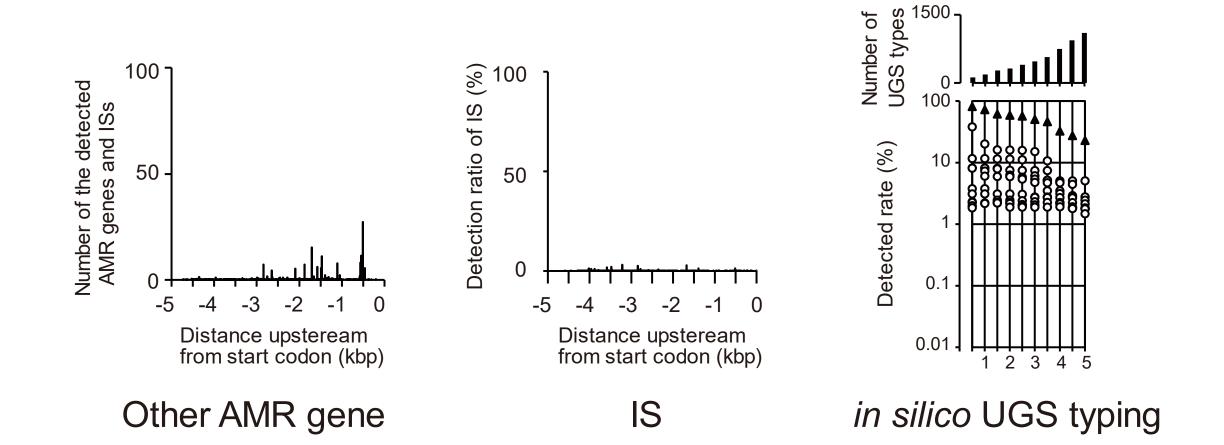
UGS type #	lsoates sources	Detected number			Ratio (%)			Ыа _{стх-м}	Location ¹	IS <i>Ecp1</i> ²	Disrupted	BioSample #
		Total	IDN	VNM	Total	IDN	VNM	group	Loodion	102001	site ³	
101	IDN	56	56	0	11.2	30.9	0.0	1	Plasmid	disrupted	24	SAMD00272437
102	IDN&VNM	38	27	11	7.6	14.9	3.4	1	Plasmid	disrupted	1370	SAMD00272503
103	VNM	21	0	21	4.2	0.0	6.6	1	Plasmid	intact		SAMD00272645
104	VNM	21	0	21	4.2	0.0	6.6	1	Plasmid	disrupted	1382	SAMD00272331
105	VNM	19	0	19	3.8	0.0	5.9	1	Plasmid	disrupted	1227	SAMD00272170
106	IDN	12	12	0	2.4	6.6	0.0	1	Plasmid	intact		SAMD00272571
107	IDN	7	7	0	1.4	3.9	0.0	1	Chromosome	intact		SAMD00272424
108	VNM	7	0	7	1.4	0.0	2.2	1	Chromosome	intact		SAMD00272539
109	VNM	6	0	6	1.2	0.0	1.9	1	Plasmid	intact		SAMD00272308
110	VNM	6	0	6	1.2	0.0	1.9	1	Plasmid	disrupted	-38	SAMD00272268
111	VNM	6	0	6	1.2	0.0	1.9	1	Plasmid	disrupted	253	SAMD00272341
112	IDN&VNM	5	4	1	1.0	2.2	0.3	1	Chromosome	intact		SAMD00272244
113	IDN	5	5	0	1.0	2.8	0.0	1	Chromosome	intact		SAMD00272479
114	VNM	5	0	5	1.0	0.0	1.6	1	Plasmid	intact		SAMD00272249
115	IDN	5	5	0	1.0	2.8	0.0	1	Plasmid	disrupted	973	SAMD00272412
116	IDN&VNM	4	3	1	0.8	1.7	0.3	1	Chromosome	intact		SAMD00272195
117	IDN	4	4	0	0.8	2.2	0.0	1	Chromosome	intact		SAMD00272431

2nd learning

The results obtained from the analysis.

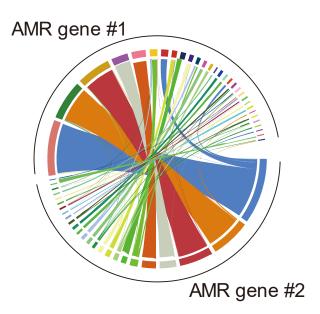
- ✓ In total 502 UGS of bla_{CTX-M} were obtained from 501 isolates.
- ✓ The 502 UGSs were classified into 85 UGS types.
- ✓ Among the 85 UGS types, <u>6 UGS types were commonly observed in the two countries.</u>
- ✓ In 71.5% of the UGSs, ISEcp1 was disrupted, suggesting bla_{CTX-M} would not be transferrable.
- ✓ Most (87.1%) of the UGSs were plasmidic.

These results encouraged us to application of UGS analysis to other AMR genes.


2nd Aim (application)

- To establish genotyping method based on the location of AMR genes' location.
- To consider UGSs of AMR genes to presuming plasmid(s) harboring AMR genes.

How we applied the learnings to other AMR genes.


- ✓ We retrieved 51,344 bacterial plasmid sequences from the database, RefSeq, and selected 9,048 plasmids containing at least one AMR gene of the top 30 detected AMR genes.
- ✓ We analyzed upstream region of the top 30 detected AMR genes up to 5,000 base pare length.
- ✓ We performed *in silico* UGS analysis for the top 30 detected AMR genes.
- ✓ We are considering how we can apply the UGSs of AMR genes to presume AMR plasmid(s).

One example of our analysis.

What we are learning.

- ✓ UGSs of the top 30 detected AMR genes could be typable as same as *bla*_{CTX-M}, even though there are many UGS types.
- ✓ There were certain combinations of UGS types of certain two of the top 30 AMR genes.
- There is a possibility that UGS types can be a good keys to search reference plasmid sequence.

✓ There is a possibility that UGS types can be a good keys to search reference plasmid sequence.

Plasmid (NZ_CP041032.1)

		/	
AMR gene	UGS	ORF	
bla _{CTX-M-15}	43	>1000	
sul1	511	>1000	
tet(A)	871	>1000	
mph(A)	316	>1000	
aac(6')-lb-cr5	459	>1000	
catB3	678	>1000	
<i>bla</i> _{OXA-1}	529	>1000	
dfrA17	44	>1000	
aadA5	186	>1000	

AMR gene	UGS	ORF
bla _{CTX-M-15} + sul1	27	230
bla _{CTX-M-15} + tet(A)	12	296
bla _{CTX-M-15} + mph(A)	28	221
<i>bla</i> _{CTX-M-15} + <i>aac(6')-lb-cr5</i>	12	499
bla _{CTX-M-15} + catB3	31	436
bla _{CTX-M-15} + bla _{OXA-1}	13	437
bla _{CTX-M-15} + dfrA17	2	76
bla _{CTX-M-15} + aadA5	2	75
<i>bla</i> _{CTX-M-15} + <i>tet(A)</i> + <i>dfrA1</i> 7	2	29
$bla_{CTX-M-15} + mph(A) + dfrA17$	2	74
bla _{CTX-M-15} + bla _{OXA-1} + dfrA17	2	83

Summary

- ✓ At least, UGSs of AMR genes could be used for genotyping and hopefully homology search as "keys".
- Bacterial whole genome sequencing will be more actively performed. Most difficult part is determination of plasmid structure.
- ✓ If we could use UGSs as the keys, plasmid analysis could be done efficiently, because you could find the reference sequence easier than it is now.