A Techno-Economic Assessment of Photovoltaic and Electric Vehicle Integration for CO2 Emission Reduction in Cities

Thiti Jittayasotorn PhD Student Department of Environmental Studies for Advanced Society, Tohoku University

Profile

Education

Master, Environmental Science, Tohoku University Bachelor, Environmental Engineering, Kasetsart University

Experience

Teacher assistant for Advanced Environmental Studies class in Tohoku University

Research interests

Urban decarbonization, energy management, energy transition, soil remediation, rare metal recovery

Collaboration

Research Institution: College of Life Sciences, National Chung Hsing University, Taiwan

What is Techno-economic Assessment?

Techno-economic assessment evaluates the feasibility and economic viability of integrating specific technologies.

Result Energy production, CO2 Emission reduction, Net present value, Payback period, LCOE.

Urban CO2 Emission Challenges

- Cities face a challenge of rising CO2 emissions, contributing to environmental degradation.
- Urgent solutions are needed to curb this trend and foster sustainability.

Our Goals

Necessity of PV and EV Integration:

Utilizing Vehicle-to-Home (V2H) systems for EVs to charge using PV-generated electricity at households.

Providing a dual solution for sustainable urban living.

Focus on both technologies for a holistic solution to combat CO2 emissions in cities.

Schemes

	2020
FIT is applied 🗸	
PV only	
FIT is not applied X	
PV only	
• PV+EV	
	2030
FIT is applied \checkmark	
PV only	

FIT is not applied X

- PV only
- PV+EV

Economic & Environmental Imapct Highlights

	With FIT		Without FIT	
2020	PV Only	PV + EV	PV Only	PV + EV
Optimal PV capacity (GW)	22.1	N/A	14.4	N/A
NPV over project period (USD B)	26.6	N/A	23.3	N/A
Discounted Payback Period (yr)	10.3	N/A	8.7	N/A
Cost Saving (%)	8	N/A	7	N/A
CO ₂ Emission Reduction (%)	28	N/A	24	N/A
Self-consumption (%)	64	N/A	86	N/A
Self-sufficiency (%)	42	N/A	36	N/A
Energy sufficiency (%)	65	N/A	42	N/A
2030				
Optimal PV capacity (GW)	36.8	36.8	24.7	36.8
NPV over project period (USD B)	59.9	94.0	41.1	94.0
Discounted payback period (yr)	4.0	3.2	4.0	3.2
Cost savings (%)	19	59	13	59
CO ₂ emission reduction (%)	32	73	29	73
Self-consumption (%)	43	95	59	95
Self-sufficiency (%)	46	71	43	71

Jittayasotorn et al., 2023

Thank you!

Thiti Jittayasotorn PhD Student Environmental studies, Tohoku University Email : thiti.jittayasotorn.s5@dc.tohoku.ac.jp